Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
2.
Talanta Open ; 7: 100187, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2183609

ABSTRACT

Aggressive diagnostic testing remains an indispensable strategy for health and aged care facilities to prevent the transmission of SARS-CoV-2 in vulnerable populations. The preferred diagnostic platform has shifted towards COVID-19 rapid antigen tests (RATs) to identify the most infectious individuals. As such, RATs are being manufactured faster than at any other time in our history yet lack the relevant quantitative analytics required to inform on absolute analytical sensitivity enabling manufacturers to maintain high batch-to-batch reproducibility, and end-users to accurately compare brands for decision making. Here, we describe a novel reference standard to measure and compare the analytical sensitivity of RATs using a recombinant GFP-tagged nucleocapsid protein (NP-GFP). Importantly, we show that the GFP tag does not interfere with NP detection and provides several advantages affording streamlined protein expression and purification in high yields as well as faster, cheaper and more sensitive quality control measures for post-production assessment of protein solubility and stability. Ten commercial COVID-19 RATs were evaluated and ranked using NP-GFP as a reference standard. Analytical sensitivity data of the selected devices as determined with NP-GFP did not correlate with those reported by the manufacturers using the median tissue culture infectious dose (TCID50) assay. Of note, TCID50 discordance has been previously reported. Taken together, our results highlight an urgent need for a reliable reference standard for evaluation and benchmarking of the analytical sensitivity of RAT devices. NP-GFP is a promising candidate as a reference standard that will ensure that RAT performance is accurately communicated to healthcare providers and the public.

4.
Lancet Reg Health West Pac ; 26: 100533, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-2086523

ABSTRACT

Background: Regular repeat surveillance testing is a strategy to identify asymptomatic individuals with SARS-CoV-2 infections in high-risk work settings to prevent onward community transmission. Saliva sampling is less invasive compared to nasal/oropharyngeal sampling, thus making it suitable for regular testing. In this multi-centre evaluation, we aimed to validate RT-PCR using salivary swab testing of SARS-CoV-2 for large-scale surveillance testing and assess implementation amongst staff working in the hotel quarantine system in Victoria, Australia. Methods: A multi-centre laboratory evaluation study was conducted to systematically validate the in vitro and clinical performance of salivary swab RT-PCR for implementation of SARS-CoV-2 surveillance testing. Analytical sensitivity for multiple RT-PCR platforms was assessed using a dilution series of known SARS-CoV-2 viral loads, and assay specificity was examined using a panel of viral pathogens other than SARS-CoV-2. In addition, we tested capacity for large-scale saliva testing using a four-sample pooling approach, where positive pools were subsequently decoupled and retested. Regular, frequent self-collected saliva swab RT-PCR testing was implemented for staff across fourteen quarantine hotels. Samples were tested at three diagnostic laboratories validated in this study, and results were provided back to staff in real-time. Findings: The agreement of self-collected saliva swabs for RT-PCR was 84.5% (95% CI 68.6 to 93.8) compared to RT-PCR using nasal/oropharyngeal swab samples collected by a healthcare practitioner, when saliva samples were collected within seven days of symptom onset. Between 7th December 2020 and 17th December 2021, almost 500,000 RT-PCR tests were performed on saliva swabs self-collected by 102 staff working in quarantine hotels in Melbourne. Of these, 20 positive saliva swabs were produced by 13 staff (0.004%). The majority of staff that tested positive occurred during periods of community transmission of the SARS-CoV-2 Delta variant. Interpretation: Salivary RT-PCR had an acceptable level of agreement compared to standard nasal/oropharyngeal swab RT-PCR within early symptom onset. The scalability, tolerability and ease of self-collection highlights utility for frequent or repeated testing in high-risk settings, such as quarantine or healthcare environments where regular monitoring of staff is critical for public health, and protection of vulnerable populations. Funding: This work was funded by the Victorian Department of Health.

5.
Pathology ; 54(5): 623-628, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1907624

ABSTRACT

During the COVID-19 pandemic, the reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) assay has been the primary method of diagnosis of SARS-CoV-2 infection. However, RT-qPCR assay interpretation can be ambiguous with no universal absolute cut-off value to determine sample positivity, which particularly complicates the analysis of samples with high Ct values, or weak positives. Therefore, we sought to analyse factors associated with weak positive SARS-CoV-2 diagnosis. We analysed sample data associated with all positive SARS-CoV-2 RT-qPCR diagnostic tests performed by the Victorian Infectious Diseases Reference Laboratory (VIDRL) in Melbourne, Australia, during the Victorian first wave (22 January 2020-30 May 2020). A subset of samples was screened for the presence of host DNA and RNA using qPCR assays for CCR5 and 18S, respectively. Assays targeting the viral RNA-dependent RNA polymerase (RdRp) had higher Ct values than assays targeting the viral N and E genes. Weak positives were not associated with the age or sex of individuals' samples nor with reduced levels of host DNA and RNA. We observed a relationship between Ct value and time post-SARS-CoV-2 diagnosis. High Ct value or weak positive SARS-CoV-2 was not associated with any particular bias including poor biological sampling.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Clinical Laboratory Techniques/methods , Humans , Pandemics , RNA, Viral/analysis , RNA, Viral/genetics , RNA-Directed DNA Polymerase/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
6.
Front Immunol ; 13: 883612, 2022.
Article in English | MEDLINE | ID: covidwho-1875414

ABSTRACT

Plasma samples taken at different time points from donors who received either AstraZeneca (Vaxzevria) or Pfizer (Comirnaty) or Moderna (Spikevax) coronavirus disease-19 (COVID-19) vaccine were assessed in virus neutralization assays against Delta and Omicron variants of concern and a reference isolate (VIC31). With the Pfizer vaccine there was 6-8-fold reduction in 50% neutralizing antibody titres (NT50) against Delta and VIC31 at 6 months compared to 2 weeks after the second dose; followed by 25-fold increase at 2 weeks after the third dose. Neutralisation of Omicron was only consistently observed 2 weeks after the third dose, with most samples having titres below the limit of detection at earlier timepoints. Moderna results were similar to Pfizer at 2 weeks after the second dose, while the titres for AstraZeneca samples derived from older donors were 7-fold lower against VIC31 and below the limit of detection against Delta and Omicron. Age and gender were not found to significantly impact our results. These findings indicate that vaccine matching may be needed, and that at least a third dose of these vaccines is necessary to generate sufficient neutralising antibodies against emerging variants of concern, especially Omicron, amidst the challenges of ensuring vaccine equity worldwide.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccines, Inactivated
8.
mSphere ; 7(3): e0091321, 2022 06 29.
Article in English | MEDLINE | ID: covidwho-1832362

ABSTRACT

New variants of SARS-CoV-2 are continuing to emerge and dominate the global sequence landscapes. Several variants have been labeled variants of concern (VOCs) because they may have a transmission advantage, increased risk of morbidity and/or mortality, or immune evasion upon a background of prior infection or vaccination. Placing the VOCs in context with the underlying variability of SARS-CoV-2 is essential in understanding virus evolution and selection pressures. Dominant genome sequences and the population genetics of SARS-CoV-2 in nasopharyngeal swabs from hospitalized patients were characterized. Nonsynonymous changes at a minor variant level were identified. These populations were generally preserved when isolates were amplified in cell culture. To place the Alpha, Beta, Delta, and Omicron VOCs in context, their growth was compared to clinical isolates of different lineages from earlier in the pandemic. The data indicated that the growth in cell culture of the Beta variant was more than that of the other variants in Vero E6 cells but not in hACE2-A549 cells. Looking at each time point, Beta grew more than the other VOCs in hACE2-A549 cells at 24 to 48 h postinfection. At 72 h postinfection there was no difference in the growth of any of the variants in either cell line. Overall, this work suggested that exploring the biology of SARS-CoV-2 is complicated by population dynamics and that these need to be considered with new variants. In the context of variation seen in other coronaviruses, the variants currently observed for SARS-CoV-2 are very similar in terms of their clinical spectrum of disease. IMPORTANCE SARS-CoV-2 is the causative agent of COVID-19. The virus has spread across the planet, causing a global pandemic. In common with other coronaviruses, SARS-CoV-2 genomes can become quite diverse as a consequence of replicating inside cells. This has given rise to multiple variants from the original virus that infected humans. These variants may have different properties and in the context of a widespread vaccination program may render vaccines less effective. Our research confirms the degree of genetic diversity of SARS-CoV-2 in patients. By comparing the growth of previous variants to the pattern seen with four variants of concern (VOCs) (Alpha, Beta, Delta, and Omicron), we show that, at least in cells, Beta variant growth exceeds that of Alpha, Delta, and Omicron VOCs at 24 to 48 h in both Vero E6 and hACE2-A549 cells, but by 72 h postinfection, the amount of virus is not different from that of the other VOCs.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , Phenotype , SARS-CoV-2/genetics
9.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: covidwho-1786083

ABSTRACT

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
10.
Int J Mol Sci ; 23(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625839

ABSTRACT

The global urgency to uncover medical countermeasures to combat the COVID-19 pandemic caused by the severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) has revealed an unmet need for robust tissue culture models that faithfully recapitulate key features of human tissues and disease. Infection of the nose is considered the dominant initial site for SARS-CoV-2 infection and models that replicate this entry portal offer the greatest potential for examining and demonstrating the effectiveness of countermeasures designed to prevent or manage this highly communicable disease. Here, we test an air-liquid-interface (ALI) differentiated human nasal epithelium (HNE) culture system as a model of authentic SARS-CoV-2 infection. Progenitor cells (basal cells) were isolated from nasal turbinate brushings, expanded under conditionally reprogrammed cell (CRC) culture conditions and differentiated at ALI. Differentiated cells were inoculated with different SARS-CoV-2 clinical isolates. Infectious virus release into apical washes was determined by TCID50, while infected cells were visualized by immunofluorescence and confocal microscopy. We demonstrate robust, reproducible SARS-CoV-2 infection of ALI-HNE established from different donors. Viral entry and release occurred from the apical surface, and infection was primarily observed in ciliated cells. In contrast to the ancestral clinical isolate, the Delta variant caused considerable cell damage. Successful establishment of ALI-HNE is donor dependent. ALI-HNE recapitulate key features of human SARS-CoV-2 infection of the nose and can serve as a pre-clinical model without the need for invasive collection of human respiratory tissue samples.


Subject(s)
COVID-19/virology , Nasal Mucosa/cytology , Nasal Mucosa/virology , Tissue Culture Techniques/methods , Adolescent , Adult , Angiotensin-Converting Enzyme 2/metabolism , Cell Culture Techniques , Cell Differentiation , Epithelial Cells/cytology , Epithelial Cells/virology , Female , Humans , Male , Middle Aged , Models, Biological , SARS-CoV-2 , Virus Internalization
11.
Open Forum Infect Dis ; 8(9): ofab359, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1405048

ABSTRACT

We describe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific immune responses in a patient with lymphoma and recent programmed death 1 (PD-1) inhibitor therapy with late onset of severe coronavirus disease 2019 disease and prolonged SARS-CoV-2 replication, in comparison to age-matched and immunocompromised controls. High levels of HLA-DR+/CD38+ activation, interleukin 6, and interleukin 18 in the absence of B cells and PD-1 expression was observed. SARS-CoV-2-specific antibody responses were absent and SARS-CoV-2-specific T cells were minimally detected. This case highlights challenges in managing immunocompromised hosts who may fail to mount effective virus-specific immune responses.

12.
Pathology ; 53(6): 689-699, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1347786

ABSTRACT

Emerging testing technologies for detection of SARS-CoV-2 include those that are rapid and can be used at point-of-care (POC), and those facilitating high throughput laboratory-based testing. Tests designed to be performed at POC (such as antigen tests and molecular assays) have the potential to expedite isolation of infectious patients and their contacts, but most are less sensitive than standard-of-care reverse transcription polymerase chain reaction (RT-PCR). Data on clinical performance of the majority of emerging assays are limited with most evaluations performed on contrived or stored laboratory samples. Further evaluations of these assays are required, particularly when performed at POC on symptomatic and asymptomatic patients and at various time-points after symptom onset. A few studies have so far shown several of these assays have high specificity. However, large prospective evaluations are needed to confirm specificity, particularly before the assays are implemented in low prevalence settings or asymptomatic populations. High throughput laboratory-based testing includes the use of new sample types (e.g., saliva to increase acceptability) or innovative uses of existing technology (e.g., sample pooling). Information detailing population-wide testing strategies for SARS-COV-2 is largely missing from peer-reviewed literature. Logistics and supply chains are key considerations in any plan to 'scale up' testing in the Australian context. The strategic use of novel assays will help strike the balance between achieving adequate test numbers without overwhelming laboratory capacity. To protect testing of high-risk populations, the aims of testing with respect to the phase of the pandemic must be considered.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Australia , Humans , SARS-CoV-2
13.
NPJ Vaccines ; 5: 96, 2020.
Article in English | MEDLINE | ID: covidwho-1343456

ABSTRACT

The 'D614G' mutation (Aspartate-to-Glycine change at position 614) of the SARS-CoV-2 spike protein has been speculated to adversely affect the efficacy of most vaccines and countermeasures that target this glycoprotein, necessitating frequent vaccine matching. Virus neutralisation assays were performed using sera from ferrets which received two doses of the INO-4800 COVID-19 vaccine, and Australian virus isolates (VIC01, SA01 and VIC31) which either possess or lack this mutation but are otherwise comparable. Through this approach, supported by biomolecular modelling of this mutation and the commonly-associated P314L mutation in the RNA-dependent RNA polymerase, we have shown that there is no experimental evidence to support this speculation. We additionally demonstrate that the putative elastase cleavage site introduced by the D614G mutation is unlikely to be accessible to proteases.

14.
Angewandte Chemie ; 133(31):17239-17244, 2021.
Article in English | ProQuest Central | ID: covidwho-1315247

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID‐19. We propose a portable infrared spectrometer with purpose‐built transflection accessory for rapid point‐of‐care detection of COVID‐19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM‐IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS‐CoV‐2 by RT‐qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT‐qPCR. Herein, we demonstrate a proof‐of‐concept high throughput infrared COVID‐19 test that is rapid, inexpensive, portable and utilizes sample self‐collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.

15.
Open Forum Infect Dis ; 8(7): ofab239, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1309620

ABSTRACT

BACKGROUND: Serological testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) complements nucleic acid tests for patient diagnosis and enables monitoring of population susceptibility to inform the coronavirus disease 2019 (COVID-19) pandemic response. It is important to understand the reliability of assays with different antigen or antibody targets to detect humoral immunity after SARS-CoV-2 infection and to understand how antibody (Ab) binding assays compare to those detecting neutralizing antibody (nAb), particularly as we move into the era of vaccines. METHODS: We evaluated the performance of 6 commercially available enzyme-linked immunosorbent assays (ELISAs), including a surrogate virus neutralization test (sVNT), for detection of SARS-CoV-2 immunoglobulins (IgA, IgM, IgG), total or nAb. A result subset was compared with a cell culture-based microneutralization (MN) assay. We tested sera from patients with prior reverse transcription polymerase chain reaction-confirmed SARS-CoV-2 infection, prepandemic sera, and potential cross-reactive sera from patients with other non-COVID-19 acute infections. RESULTS: For sera collected >14 days post-symptom onset, the assay achieving the highest sensitivity was the Wantai total Ab at 100% (95% CI, 94.6%-100%), followed by 93.1% for Euroimmun NCP-IgG, 93.1% for GenScript sVNT, 90.3% for Euroimmun S1-IgG, 88.9% for Euroimmun S1-IgA, and 83.3% for Wantai IgM. Specificity for the best-performing assay was 99.5% for the Wantai total Ab, and for the lowest-performing assay it was 97.1% for sVNT (as per the Instructions for Use [IFU]). The Wantai Total Ab had the best agreement with MN at 98% followed by Euroimmun S1-IgA, Euro NCP-IgG, and sVNT (as per IFU) with 97%, 97% and 95%, respectively; Wantai IgM had the poorest agreement at 93%. CONCLUSIONS: Performance characteristics of the SARS-CoV-2 serology assays detecting different antibody types are consistent with those found in previously published reports. Evaluation of the surrogate virus neutralization test in comparison to the Ab binding assays and a cell culture-based neutralization assay showed good result correlation between all assays. However, correlation between the cell-based neutralization test and some assays detecting Ab's not specifically involved in neutralization was higher than with the sVNT. This study demonstrates the reliability of different assays to detect the humoral immune response following SARS-CoV-2 infection, which can be used to optimize serological test algorithms for assessing antibody responses post-SARS-CoV-2 infection or vaccination.

16.
Front Immunol ; 12: 694857, 2021.
Article in English | MEDLINE | ID: covidwho-1305648

ABSTRACT

The ongoing COVID-19 pandemic has resulted in significant global morbidity and mortality on a scale similar to the influenza pandemic of 1918. Over the course of the last few months, a number of SARS-CoV-2 variants have been identified against which vaccine-induced immune responses may be less effective. These "variants-of-concern" have garnered significant attention in the media, with discussion around their impact on the future of the pandemic and the ability of leading COVID-19 vaccines to protect against them effectively. To address concerns about emerging SARS-CoV-2 variants affecting vaccine-induced immunity, we investigated the neutralisation of representative 'G614', '501Y.V1' and '501Y.V2' virus isolates using sera from ferrets that had received prime-boost doses of the DNA vaccine, INO-4800. Neutralisation titres against G614 and 501Y.V1 were comparable, but titres against the 501Y.V2 variant were approximately 4-fold lower, similar to results reported with other nucleic acid vaccines and supported by in silico biomolecular modelling. The results confirm that the vaccine-induced neutralising antibodies generated by INO-4800 remain effective against current variants-of-concern, albeit with lower neutralisation titres against 501Y.V2 similar to other leading nucleic acid-based vaccines.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/physiology , Animals , Antibodies, Neutralizing/metabolism , Antibodies, Viral/metabolism , Antigenic Variation , Disease Models, Animal , Ferrets , Humans , Immunization, Secondary , Immunogenicity, Vaccine , Models, Molecular , Mutation/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
19.
Angew Chem Int Ed Engl ; 60(31): 17102-17107, 2021 07 26.
Article in English | MEDLINE | ID: covidwho-1245354

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented need for diagnostic testing that is critical in controlling the spread of COVID-19. We propose a portable infrared spectrometer with purpose-built transflection accessory for rapid point-of-care detection of COVID-19 markers in saliva. Initially, purified virion particles were characterized with Raman spectroscopy, synchrotron infrared (IR) and AFM-IR. A data set comprising 171 transflection infrared spectra from 29 subjects testing positive for SARS-CoV-2 by RT-qPCR and 28 testing negative, was modeled using Monte Carlo Double Cross Validation with 50 randomized test and model sets. The testing sensitivity was 93 % (27/29) with a specificity of 82 % (23/28) that included positive samples on the limit of detection for RT-qPCR. Herein, we demonstrate a proof-of-concept high throughput infrared COVID-19 test that is rapid, inexpensive, portable and utilizes sample self-collection thus minimizing the risk to healthcare workers and ideally suited to mass screening.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Saliva/chemistry , Animals , Chlorocebus aethiops , Cohort Studies , Discriminant Analysis , Humans , Least-Squares Analysis , Monte Carlo Method , Point-of-Care Testing , Proof of Concept Study , SARS-CoV-2 , Sensitivity and Specificity , Specimen Handling , Spectrophotometry, Infrared , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL